Bài 2: Diện tích hình chữ nhật

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kathy Nguyễn

Cho tam giác ABC cân tại A có AE là đường cao. Gọi D, F lần lượt là trung điểm của AB, AC. Vẽ điểm M đối xứng với điểm E qua điểm F

a) Chứng minh tứ giác BDFC là hình thang cân

b) Chứng minh tứ giác AECM là hình chữ nhật

c) Chứng minh tứ giác ABEM là hình bình hành

d) Biết BC=10cm, AC=13cm. Tính diện tích hình chữ nhật AECM

Gia Hân Ngô
22 tháng 12 2017 lúc 18:48

pn tự vẽ hình nhé

a) Xét \(\bigtriangleup ABC\), có:

\(\left.\begin{matrix} AD = DB (gt) & & \\ AF = FC (gt) & & \end{matrix}\right\}\)

=> DF là đường trung bình của \(\bigtriangleup ABC\)

=> DF // BC

=> Tứ giác BDFC là ht (1)

Mà: \(\widehat{ABC}=\widehat{ACB}\) (\(\bigtriangleup ABC\) cân tại A)

Hay: \(\widehat{DBC}=\widehat{FCB}\) (2)

Từ (1) và (2) => Ht BDFC là htc

b) Xét tứ giác AECM, có:

\(\left.\begin{matrix} AF = FC (gt) & & \\ MF=FC (gt) & & \end{matrix}\right\}\)

=> Tứ giác AECM là hbh

Mà: \(AE\perp BC\) (gt)

Hay: \(AE\perp EC (EC \epsilon BC)\)

=> \(\widehat{AEC}= 90^{\circ}\)

Vậy hbh AECM là hcn

c) Ta có: AECM là hcn

=> AM // EC và AM = EC (3)

Ta lại có: AE là đường cao của \(\bigtriangleup ABC\) cân tại A

=> AE cũng là đường trung tuyến của \(\bigtriangleup ABC\)

=> BE = EC, mà \(EC\epsilon BE\) (4)

Từ (3) và (4) => AM // BE và AM = BE

=> Tứ giác ABEM là hbh

d) Ta có: \(EC = \frac{1}{2}BC = \frac{1}{2}.10= 5\) cm (E trung điểm BC)

Xét \(\bigtriangleup AEC\) vuông tại A, ta có:

\(AC^{2}= AE^{2} + EC^{2}\) (Pytago)

\(=> AE^{2}= AC^{2}- EC^{2}= 13^{2}- 5^{2}= 144\)

\(=> AE = \sqrt{144}= 12\) cm

\(S_{AECM}= AE.EC = 12.5=60 cm^{2}\)


Các câu hỏi tương tự
Nam Nguyen
Xem chi tiết
Bảnh Pháp
Xem chi tiết
Hoàng Anh Nguyễn
Xem chi tiết
Thư Lê
Xem chi tiết
Kim Phương
Xem chi tiết
anh hoang
Xem chi tiết
sharker
Xem chi tiết
anh hoang
Xem chi tiết
Mastered Ultra Instinct
Xem chi tiết