\(\Delta ABC\text{cân tại A }:\)
\(\Leftrightarrow\widehat{B}=\widehat{C}=30^0\)
\(TC:\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}=180^0-2\widehat{B}=180-2\cdot30^0=120^0\)
\(\Delta ABC\text{cân tại A }:\)
\(\Leftrightarrow\widehat{B}=\widehat{C}=30^0\)
\(TC:\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}=180^0-2\widehat{B}=180-2\cdot30^0=120^0\)
cho tam giác ABC cân tại A , B=30 độ kẻ AH vuông góc với BC ( H thuộc BC ) a tính số đo góc A b chứng minh góc BAH = góc CAH c cho AH = 3cm , HC = 4cm tính độ dài AC d kẻ HE vuông góc với AB , HF vuông goc với AC ( E thuộc AB , F thuộc AC ) . Chứng minh HE = HF
cho tam giác ABC cân tại A , B=30 độ kẻ AH vuông góc với BC ( H thuộc BC ) a tính số đo góc A b chứng minh góc BAH = góc CAH c cho AH = 3cm , HC = 4cm tính độ dài AC d kẻ HE vuông góc với AB , HF vuông goc với AC ( E thuộc AB , F thuộc AC ) . Chứng minh HE = HF
Cho tam giác cân ABC cân tại A Kẻ AH vuông góc BC Kẻ HI vuông góc AB Kẻ HKC vuông góc AC
a. chứng minh tam giác AHB= tam giác AHC
b. Chứng minh HB=HC
c. Chứng minh tam giác HIB= tam giác HKC
cho tam giác nhọn ABC, kẻ AH vuông góc với BC (H thuộc BC) cho biết AH=12 cm ,BH=5cm và BC =14cm tính độ dài AB và AC
Bài 1 Cho tam giác ABC vuông ở A,có AB=6cm;AC=8cm,phân giác BD(D thuộc AC).Kẻ DE vông góc với BC(E thuộc BC).Gọi F là giao điểm của BA và ED.
a) Tính độ dài cạnh bC?b) Chứng Minh: tam giác BAD= tam giác BEDc) Chứng Minh tam giác DFC cân tại D
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC \(\left(H\in BC\right)\). Chứng minh rằng :
a) HB = HC
b) \(\widehat{BAH}=\widehat{CAH}\)