Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Cho tam giác ABC ( AC < BC) nội tiếp đường tròn (O) có AB là đường kính. Từ điểm O vẽ đường thẳng song song với AC và cắt đường tròn (O) tại I (điểm I thuộc cung nhỏ CB).

a) Chứng minh OI vuông góc với BC.

b) Vẽ tiếp tuyến của đường tròn (O) tại B và cắt OI tại M. Chứng minh MC là tiếp tuyến của đường tròn (O).

Nguyễn Quốc Đạt
26 tháng 10 2024 lúc 23:16

a) Xét đường tròn (O) có:

\(\widehat {ACB}\) là góc nội tiếp chắn cung AB, mà AB là đường kính của đường tròn (O).

\(\widehat {ACB}\) = 90o hay tam giác ABC vuông tại C, mà OI // AC (giả thiết).

Suy ra OI \( \bot \) BC (quan hệ từ vuông góc – song song).

b) Vì OB = OC = R suy ra tam giác OBC cân tại O mà OI là đường cao của tam giác OBC.

Suy ra OI đồng thời là phân giác của tam giác OBC.

Suy ra \(\widehat {COI} = \widehat {BOI}\)  hay \(\widehat {COM} = \widehat {BOM}\)

Xét \(\Delta \) COM và \(\Delta \) BOM có:

OC = OB = R;

\(\widehat {COM} = \widehat {BOM}\) (chứng minh trên);

OM chung.

Suy ra \(\Delta \)COM = \(\Delta \)BOM (c – g – c).

Do đó, \(\widehat {OBM} = \widehat {OCM}\) (hai góc tương ứng)

Mà \(\widehat {OBM}\) = 90o (do MB là tiếp tuyến của đường tròn).

Suy ra \(\widehat {OCM}\) = 90o hay OM \( \bot \) MC mà C thuộc đường tròn (O)

Suy ra MC là tiếp tuyến đường tròn (O).