Bài 3: Phương trình đưa được về dạng ax + b = 0

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Nhi

Cho pt: (m+1)x + 4 = x + m2 (m: tham số)

a. Giải pt theo m

b. Tìm m để pt có nghiệm bằng 3

Aki Tsuki
30 tháng 5 2018 lúc 12:22

a/ \(\left(m+1\right)x+4=x+m^2\)

\(\Leftrightarrow\left(m+1\right)x-x=m^2-4\)

\(\Leftrightarrow x\left(m+1-1\right)=m^2-4\Leftrightarrow mx=m^2-4\Leftrightarrow x=\dfrac{m^2-4}{m}\)

b/ Pt có nghiệm = 3

=> \(\left(m+1\right)\cdot3+4=3+m^2\)

\(\Leftrightarrow3m+7=3+m^2\)

\(\Leftrightarrow-m^2+3m+4=0\)

\(\Leftrightarrow-m^2-m+4m+4=0\)

\(\Leftrightarrow-m\left(m+1\right)+4\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(4-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\4-m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=4\end{matrix}\right.\)

Vậy m = -1 hoặc m = 4 thì pt có nghiệm x = 3