Cho pt \(ax^2+bx+x=0(a\ne0)\)có 2 nghiệm \(x_1,x_2tm:ax_1+bx_2+x=0 \)
Tính giá trị của biểu thức:
M=ac(a+c)-b(b2-3ac)
Cho pt \(ax^2+bx+x=0(a\ne0)\)có 2 nghiệm \(x_1,x_2tm:ax_1+bx_2+x=0 \)
Tính giá trị của biểu thức:
M=ac(a+c)-b(b2-3ac)
Cho pt bậc hai: ax2 + bx + c = 0, (a khác 0) có hai nghiệm x1;x2 thuộc [0;1]. Tìm GTLN của biểu thức \(A=\frac{\left(a-b\right)\left(2a-b\right)}{a\left(a-b+c\right)}\)
Cho phương trình \(x^2-3x+1=0\).Gọi \(x_1\)và \(x_2\)là 2 nghiệm của phương trình.Hãy tính giá trị biểu thức A=\(x^2_1+x^2_2\)
Tìm các nghiệm của pt (ax^2+bx+c)(cx^2+bx+a)=0 biết a,b,c là các số hữu tỉ (a,c khác 0) và x=($\sqrt{2}$+1)^2 là một nghiệm của pt này
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
Cho a, b thõa : \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\). Chứng minh rằng 1 trong 2 PT có nghiệm :\(x^2+ax+b=0\) và \(x^2+bx+a=0\)
Cho pt: x²+3x+m-4=0 a) giải pt khi m=4 b) tính x1+x2, x1.x2 theo m c) tìm m để pt có 2 nghiệm phân biệt thỏa hệ thức x1³+x2³=8
* Cho biểu thức:
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A
c. Tính các giá trị của x để A>0
Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)và B=\(\dfrac{3x}{x-2\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)với x>0,x\(\ne\)1
1.Tính giá trị biểu thức khi A=0,09
2.Rút gọn biểu thức B và M=B:A
3.Tìm giá trị x để biểu thức M<1
Cho phương trình:\(x^2-2\left(m+1\right)x+2m-2=0\) với x là ẩn số.
a)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m .
b) Gọi hai nghiệm của phương trình là x1 , x2 , tính theo m giá trị của biểu thức E = \(x_1^2+2\left(m+1\right)x_2+2m-2\)