Cho tam giác ABC. Một đường thẳng song song với BC cắt AB, AC theo thứ tự ở D và E. Gọi G là một điểm nằm trên BC. Tính diện tích tứ giác ADGE biết diện tích tam giác ABC bằng 16 cm vuông, diện tích tam giác ADE bằng 9cm vuông
Cho 1 tam giác ABC và 1 điểm o nằm trong tam giác , AO cắt BC tại M . BO cắt CA tại N . Biết diện tích AOB = 3cm2 , diện tích BOM = diện tích AON = 1cm2 . tính diện tích ABC
a) Cho hai tam giác ABC và DBC. Kẻ đường cao AH của tam giác ABC. Kẻ đường cao DK của tam giác DBC. Gọi S là diện tích của tam giác ABC. Gọi S' là diện tích của tam giác DBC
Chứng minh rằng : \(\dfrac{S'}{S}=\dfrac{DK}{AH}\)
b) Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T
Chứng minh rằng \(\dfrac{MH}{AD}+\dfrac{MK}{BE}+\dfrac{MT}{CF}=\)
Cho tam giác ABC,trung tuyến AM.Gọi I là trung điểm của AM,tia BI cắt AC tại D,tia CI cắt AB tại E.Tính diện tích tam giác AID biết diện tích tam giác ABC=30cm2
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC theo thứ tự ở D, E. Qua C kẻ đường thẳng song song với EB, cắt đường thẳng AB ở K. chứng minh hệ thức:
AB2 = AD.AK
cho tam giác ABC có diện tích là S. Lấy các điểm M, N, P lần lượt trên các cạnh AB, BC, CA sao cho \(\frac{AM}{BM}=\frac{BN}{CN}=\frac{CP}{AP}=\frac{1}{3}\). Tính diện tích tam giác MNP theo S
cho tam giác ABC vuông tại A , lấy một điểm bất kì trên cạnh AC. Từ C vẽ đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D,cắt tia BA tại E.
a) Tính diện tích tam giác DECB, biết BMC=120độ và diện tích tam giác AED=36cm2
b) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi
c) kẻ HD vuông góc với BC( H thuộc BC). Gọi P,Q lần lượt là trung điểm của các đoạn thẳng BH,DH. Chứng minh CQ vuông góc PD