BT1: Tính nhanh:
3) ( \(\dfrac{98}{99}-\dfrac{98}{97}+\dfrac{1}{97.98}\) ) . ( \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\))
BT2: Tính nhanh
11) \(\left(\dfrac{99}{98}-\dfrac{98}{97}+\dfrac{1}{98.97}\right).\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\right)\)
12) \(\dfrac{7}{17}+\dfrac{10}{17}\left(\dfrac{-3}{5}+\dfrac{1}{2}\right)^2\)
A= \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Tính
\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{99.100}\)
1. Tính:
a.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
b.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
2. Tìm x , biết:
a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)
b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
bài này ko được coppy trên mạng
Bài 1: Cho A=\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
a) Chứng minh: A=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
b) Chứng minh: A<\(\dfrac{5}{6}\)
Tính \(H=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...........+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.............+\dfrac{1}{100}}:\dfrac{92-\dfrac{1}{9}-\dfrac{1}{10}-..............\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+........+\dfrac{1}{500}}\)
Help me!!!
cÂU 1: tÍNH GIÁ TRỊ CỦA BIỂU THỨC:
A=\(\dfrac{9}{1.2}\) + \(\dfrac{9}{2.3}\) + \(\dfrac{9}{3.4}\) + ...... + \(\dfrac{9}{98.99}\) + \(\dfrac{9}{99.100}\)
\(\left(1+\dfrac{2}{2.3}\right).\left(1+\dfrac{2}{3.4}\right).....\left(1+\dfrac{2}{n\left(n+1\right)}\right)\)