Cho một hình trụ có đường kính của đáy bằng với chiều cao và có thể tích bằng 2π cm3.
a) Tính chiều cao của hình trụ.
b) Diện tích toàn phần của hình trụ bằng tổng diện tích xung quanh và diện tích hai đáy hình trụ. Tính diện tích toàn phần của hình trụ trên.
a) Gọi đường kính đáy của hình trụ là R (\(R > 0\), cm).
Khi đó, bán kính đáy của hình trụ là \(\frac{R}{2}\left( {cm} \right)\) và chiều cao là R (cm).
Thể tích hình trụ là:
\(V = \pi .{\left( {\frac{R}{2}} \right)^2}.R = \frac{{{R^3}\pi }}{4}\).
Vì thể tích hình trụ bằng \(2\pi \;c{m^3}\) nên ta có: \(\frac{{{R^3}\pi }}{4} = 2\pi \), suy ra \({R^3} = 8\) nên \(R = 2cm\) (do \(R > 0\))
Vậy chiều cao hình trụ là: \(h = 2cm\).
b) Diện tích xung quanh của hình trụ bán kính 1cm và chiều cao 2cm là:
\({S_{xq}} = 2\pi .1.2 = 4\pi \left( {c{m^2}} \right)\).
Diện tích hai đáy của hình trụ bán kính 1cm là:
\({S_1} = 2.\pi {.1^2} = 2\pi \left( {c{m^2}} \right)\).
Diện tích toàn phần của hình trụ là:
\(S = {S_{xq}} + {S_1} = 4\pi + 2\pi = 6\pi \left( {c{m^2}} \right)\).