Cho hình vuông ABCD. Gọi E, F, K lần lượt là trung điểm của AB, BC, CD
a) CM: AECK là hbh
b) CM: DF ⊥ CE (ở M)
c) AK cắt DF ở N. CM: N là trung điểm của DM
d) CM: AM = AB.
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC
a) Chứng minh rằng CE vuông góc với DF
b) Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD
Hướng dẫn : Gọi K là trung điểm của CD. Chứng minh rằng KA // CE
Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm AB, BC. CM cắt DN tại I.
chứng minh CM vuông góc DN
Cho hình vuông ABCD, e là trung điểm của AB, F là trung điểm của BC, CE giao vs DF tại I. Cm
a, CE=DF, \(CE\perp DF\)
b, tam giác ABI cân
Cho hình bình hành ABCD. Gọi P,Q,R,S lần lượt là trung điểm các cạnh AB,BC,CD,DA. Nối AQ và RB cắt nhau ở I. AQ và DP cắt nhau ở K. CS cắt DP ở N và CS cắt RB ở M.
a) Chứng minh tứ giác PBRD là hbh
b) Tứ giác MNKI là hình gì?
c) Chứng minh KI = 2/5 AQ
d) Tính diện tích tứ giác MNKI biết diện tích hbh ABCD bằng 60cm^2
Cíu với ạaaa
Cho hình vuông ABCD. Trên cạnh BC lấy điểm E bất kỳ, trên tia đối của tia CD lấy điểm F sao cho CF=CE
a. CM: DE=BF
b. BD cắt EF tại K, DE cắt BF tại H. CM: FK, DH là các đường cao của tam giác DBF
c. Gọi M là trung điểm của EF, O là giao điểm của AC và BD. CM: OM//AK
Bài 3: Hình vuông ABCD. E thuộc AB: EA=EB, F thuộc CB: FC=FB. CMR:
a) CE vuông góc với DF
b) CE cắt DF tại M. CMR: AM=AD
Bài 4: Hình vuông ABCD, AB=BC=CD=DA=4cm. I là trung điểm của AD, E đối xứng với A qua BI, BE cắt CD ở F. Tính DF=?
Bài 5: Hình vuông ABCD. E, F, I theo thứ tự là trung điểm của BC, CD, DA. H, K theo thứ tự là giao điểm của IB, DE với AF. CMR:
a) AH=HK
b) IB vuông góc với AF
c) BA=BK
cho hình bình hành abcd có ab = 2.ad. gọi m, n lần lượt là trung điểm của ab và cd. a) chứng minh tứ giác bmdn là hình bình hành. b) tia dm cắt cb tại i. tứ giác dnbi là hình gì ? vì sao ? c) gọi k là giao điểm của db và ni. chứng minh m, k, c thẳng hàng.