Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Lệ Hoa

Cho hình tam giác ABC vuông góc ở A, biết độ dài cạnh AB bằng 40cm, độ dài cạnh AC bằng 50cm. Trên cạnh AB lấy đoạn thẳng AD có độ dài 10cm, từ D kẻ đường thẳng song song với AC và cắt BC tại E. Tìm diện tích tam giác BDE. ( giải bằng 2 cách )

Giúp tui với bà Mai

Trần Thị Bảo Trân
2 tháng 10 2016 lúc 21:49

10cm 40cm D A B C E 50cm

Nối \(AE\), tam giác \(EAC\) có chiều cao bằng độ dài đoạn \(AD=10cm\).

Diện tích tam giác \(EAC\) bằng:

\(\frac{50\times10}{2}=250\left(cm^2\right)\)

Diện tích tam giác \(ABC\) bằng:

\(\frac{50\times40}{2}=1000\left(cm^2\right)\)

Diện tích tam giác \(BAE\) ( bằng diện tích tam giác \(ABC\) trừ đi diện tích tam giác \(EAC\) ):

\(1000-250=750\left(cm^2\right)\)

Chiều cao \(ED\) của tam giác \(BAE\) bằng:

\(\frac{750\times2}{40}=37,5\left(cm\right)\)

Độ dài cạnh \(BC\) bằng:

\(50-10=40\left(cm\right)\)

Vì \(DE\) song song với \(AC\) nên \(DE\) vuông góc với \(BD\). Vậy tam giác \(BDE\) là tam giác vuông tại \(D\) và có diện tích bằng:

\(\frac{40\times37,5}{2}=750\left(cm^2\right)\)

Đáp số\(750cm^2\)

Trần Thị Bảo Trân
2 tháng 10 2016 lúc 21:26

B A D C E 40cm 10cm 50cm

\(S\) \(ABC:\frac{40\times50}{2}=1000\left(cm^2\right)\)

\(S\) \(AEC:\frac{50\times10}{2}=250\left(cm^2\right)\)

\(S\) \(ABE:1000-250=750\left(cm^2\right)\)

\(DE:\frac{750\times2}{40}=37,5\left(cm\right)\)

\(S\) \(BDE:\frac{37,5\times30}{2}=562,5\left(cm^2\right)\)

Giang Vi Thị
24 tháng 7 2017 lúc 9:11

562,5

 


Các câu hỏi tương tự
kuyamara mary
Xem chi tiết
Trần Yến Nhi
Xem chi tiết
Phạm Ngọc Anh
Xem chi tiết
Nguyễn Thanh Thủy
Xem chi tiết
Nguyễn Thanh Thủy
Xem chi tiết
Dương Nguyễn Thùy
Xem chi tiết
Dương Nguyễn Thùy
Xem chi tiết
Vũ Thị Thanh Thanh
Xem chi tiết
Linh olm
Xem chi tiết