Lời giải:
Hình lăng trụ tam giác đều là hình lăng trụ đứng. Kẻ \(BH\perp CA\) thì vì \(\left\{\begin{matrix} BH\perp AC\\ BH\perp AA'\end{matrix}\right.\) \(\Rightarrow BH\perp (ACC'A')\)
Khi đó \((BC',(ACC'A'))=\angle BC'H=30^0\)
\(\Rightarrow \sin 30=\frac{BH}{BC'}=\frac{1}{2}\Rightarrow BC'=\sqrt{3}a\) kéo theo \(BB'=\sqrt{BC'^2-B'C'^2}=\sqrt{2}a\)
\(\Rightarrow V_{ABC.A'B'C'}=BB'.S_{ABC}=\sqrt{2}a.\frac{\sqrt{3}a^2}{4}=\frac{\sqrt{6}a^3}{4}\)