Sơ đồ minh họa:
Phân tích: Ta thấy tam giác \(KDC\) và tứ giác \(MNCD\) có phần chung là tứ giác \(EFCD\).
Vậy để chứng tỏ: \(S_{KEF}=S_{MED}+S_{FNC}\) ta cần chứng tỏ \(S_{KDC}=S_{MNCD}\)
Giải tóm tắt:
\(S_{KDC}=DC\times BC\div2=\frac{1}{2}\times S_{ABCD}\) (1)
Vì \(ABCD\) là hình chữ nhật nên tứ giác \(MNCD\) là hình thang và có diện tích là:
\(S_{MNCD}=\left(MD+NC\right)\times DC\div2=\)
\(=AD\times DC\div2=\frac{1}{2}\times S_{ABCD}\) (2)
Từ (1) và (2) ta có: \(S_{KDC}=S_{MNCD}\)
Tam giác \(KDC\) và hình thang \(MNCD\) có phần chung là tứ giác \(EFCD\), suy ra:
\(S_{KEF}=S_{MED}+S_{FNC}\)