\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)
Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)
Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì \(\omega\) có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)
Do vậy tọa độ của A, B là nghiệm của hệ :
\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)
Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)