Bạn tự vẽ hình nhé!
Giải:
a) \(SO^2=SD^2-OD^2=24^2-\left(\dfrac{20\sqrt{2}}{2}\right)^2\) \(=376\)
\(\Rightarrow SO=\sqrt{376}\approx19,4\left(cm\right)\)
\(\Rightarrow V=\dfrac{1}{3}.20^2.19,4\approx2586,6\left(cm^2\right)\)
b) Gọi \(H\) là trung điểm của \(CD\)
\(SH^2=SD^2-DH^2=24^2-\left(\dfrac{20}{2}\right)^2=476\)
\(\Rightarrow SH=\sqrt{476}\approx21,8\left(cm\right)\)
\(S_{xq}\approx\dfrac{1}{2}.80.21,8\approx872\left(cm^2\right)\)
\(S_d=AB^2=20^2=400\left(cm^2\right)\)
Vậy \(S_{tp}=S_{xq}+S_d=872+400=1272\left(cm^2\right)\)