\(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\\left(SBC\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SB\perp\left(ABCD\right)\)
Gọi N là trung điểm CD
\(SG=\frac{2}{3}SN\Rightarrow d\left(G;\left(SAC\right)\right)=\frac{2}{3}d\left(N;\left(SAC\right)\right)\)
\(CN=\frac{1}{2}CD\Rightarrow d\left(N;\left(SAC\right)\right)=\frac{1}{2}d\left(D;\left(SAC\right)\right)\)
\(OB=OD\Rightarrow d\left(D;\left(SAC\right)\right)=d\left(B;\left(SAC\right)\right)\)
\(\Rightarrow d\left(G;\left(SAC\right)\right)=\frac{1}{3}d\left(B;\left(SAC\right)\right)\)
Do ABCD là hình vuông \(\Rightarrow OB\perp AC\)
Từ B kẻ \(BH\perp SO\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH=d\left(B;\left(SAC\right)\right)\)
\(BO=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\)
\(\frac{1}{BH^2}=\frac{1}{SB^2}+\frac{1}{BO^2}\Rightarrow BH=\frac{SB.OB}{\sqrt{SB^2+OB^2}}=\frac{a\sqrt{10}}{5}\)
\(\Rightarrow d\left(G;\left(SAC\right)\right)=\frac{a\sqrt{10}}{15}\)