Gọi O là tâm đáy, M là trung điểm AB và H là hình chiếu vuông góc của S lên (ABCD)
\(\Rightarrow\) H trùng tâm của tam giác đều ABC đồng thời HM là trung tuyến (kiêm đường cao) của tam giác ABC
\(\widehat{DCH}=\widehat{ACH}+\widehat{ACD}=\dfrac{1}{2}\widehat{ACB}+\widehat{ACD}=\dfrac{1}{2}.60^0+60^0=90^0\)
\(\Rightarrow HC\perp CD\)
\(\Rightarrow CD\perp\left(SCH\right)\Rightarrow\widehat{SCH}\) là góc giữa (SCD) và (ABCD) \(\Rightarrow\widehat{SCH}=60^0\)
\(CH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow SH=CH.tan60^0=a\)
\(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(AB;SD\right)=d\left(AB;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)
MH cắt (SCD) tại C, mà \(CM=\dfrac{3}{2}CH\Rightarrow d\left(M;\left(SCD\right)\right)=\dfrac{3}{2}d\left(H;\left(SCD\right)\right)\)
Trong tam giác vuông SCH, kẻ \(HK\perp SC\Rightarrow HK\perp\left(SCD\right)\Rightarrow HK=d\left(H;\left(SCD\right)\right)\)
\(\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{CH^2}=\dfrac{4}{3a^2}\Rightarrow HK=\dfrac{a\sqrt{3}}{2}\)
\(\Rightarrow d\left(AB;SD\right)=\dfrac{3a\sqrt{3}}{4}\)