Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a hai mặt phẳng SAB và SAD cùng vuông góc với mặt đáy gọi M lần lượt là trung điểm của AD tính khoảng cách giữa hai đường thẳng AB và SM biết SC = a căn 3
Cho hình chóp S.ABCD , đáy là hình vuông cạnh a, SB vuông góc với (ABCD) và SB = 2a. Gọi M,N lần lượt là trung điểm của CD và DA. Tính khoảng cách giữa CN và SD ?
cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với đáy SA=a căn 3 a)cm SAC vuông góc với SBD b)gọi AH là đg cao của tam giác SAB . cmr AK vuông góc với (SBC) c) tính góc giữa đg thẳng SC và mặt đáy ABC d) tính khoảng cách từ a đến mp (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O. AB=a,BD=a căn 3 biết hình chiếu của S lên (ABCD) là điểm M với M là trung điểm OB. Đồng thời SH= a căn3
a) Tính góc giữa (SCD) và (ABCD)
b) Khoảng cách (SD, BC)
c) Khoảng cách (SB,AC)
Cho hình chóp S.ABCD đáy là hình chữ nhật AB=a AD=2a, SA=a và vuông góc với đáy. Gọi M và I lần lượt trung điểm của SC và CD. Tính khoảng cách từ A đến (SBM)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA=a\(\sqrt{2}\)
a) CMR các mặt bên của hình chóp là những tam giác vuông.
b) CMR (SAC) vuông góc với (SBD)
c)Tính góc giữa SC và mp (SAB)
d)Tính góc giữa hai mp(SBD) và (ABCD)
e)Tính khoảng cách giữa điểm A và mp (SCD).
Hình chóp A.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = \(a\sqrt{2}\). Gọi I và K lần lượt là trung điểm AD và BC.
a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC)
b) Tính khoảng cách giữa hai đường thẳng AD và SB
Cho hình chóp S.ABCD có tam giác SAB đều và nằm trong mặt phẳng vuông góc với (ABCD) , tứ giác ABCD là hình vuông cạnh a . Gọi H là trung điểm của AB . Tính khoảng cách từ điểm H đến mặt phẳng (SCD).