Câu 27: Cho hình chóp .S ABCD có đáy là hình vuông cạnh 2a. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết 3 SA a . Thể tích của khối chóp .S BCD theo a bằng ?
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Tma giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Biết SD = \(2a\sqrt{3}\) và góc tạ bởi SC và mặt phẳng (ABCD) bằng 30o . Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ B đến mặt phẳng (SAC)
Khối chóp S.ABCD có tam giác SAB cân tại A và nằm trong mặt phẳng vuông góc với đáy. Hình vuông ABCD có AC=2a, ((SCD);(ABCD))=60°
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SO vuông góc với mặt phẳng đáy, mặt bên (SAB) là tam giác đều cạnh a và hợp với đáy 1 góc 450. Gọi M, N lần lượt là trung điểm của AB và AD. Tính thể tích khối chóp S.ABCD và khoảng cách giữa SM và NC
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, góc BAD=120. Mặt bên (SAB) có SA=a, SB= a\(\sqrt{3}\) và vuông góc với mặt phẳng đáy. Gọi G là trọng tâm tam giác SCD. Tính thể tích hình chóp SABCD và khoảng cách từ G đến mặt phẳng (SAB)
Cho hình chóp SABCD đáy ABCD là hình chữ nhật tâm I ,AB =a, BC=a căn 3 .Tam giác SIA cân tại S . (SAD) vuông góc với đáy .góc giữa SD và (ABCD) = 60* .Tính thể tích khối chóp SABCI?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , AB=BC=a, AD=2a. Cạnh bên SA vuông góc với mặt phẳng (ABCD) , góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ .Tính theo a thể tích của khối chóp A.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Hình chiếu của đỉnh S lên mặt phẳng (ABCD) trùng với giao điểm I của AC và BD. Mặt bên (SAB) hợp với đáy một góc \(60^0\). Biết rằng \(AB=BC=a;AD=3a\). Tính thể tích khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (SAB) theo a.
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AB=a, sa vuông góc với mp ABCD, SC tạo với mp(ABCD)một góc 45 độ và SC=2a căn 2. Tính thế tích khối chóp SABCDvà khoảng cách từ trọng tâm G của tam giac ABC đến mp (SCD) theo a