Mn giúp e vs ạ e cần gấp😞😞😞
Mn giúp e vs ạ e cần gấp😞😞😞
Mn giúp e vs ạ e cần gấp😞😞😞
Mn giúp e vs ạ e cần gấp😞😞😞
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
Bài 3: Cho tứ giác MNPQ có hai đường chéo cắt nhau tại E. Gọi F là trung điểm của NP. Lấy điểm H đối xứng với E qua F. Chứng minh rằng: a) Tứ giác ENHP là hình bình hành. b) Tứ giác NHPQ là hình thang.
Bài 1 : Cho hình bình hành ABCD ( AB > BC ) . Tia phân giác của góc D cắt AB ở E , tia phân giác của góc B cắt CD ở F . a ) Chứng minh DE // BF b ) Tứ giác DEBF là hình gì Bài 2 : Cho hình bình hành ABCD . gọi K , I lần lượt là trung điểm của các cạnh AB , CD . Gọi M , N lần lượt là giao điểm của AI , CK với đường chéo BD . Chứng minh AC , BD , IK đồng quy tại một điểm
Cho hình bình hành ABCD có góc A từ và AB>BC.Kẻ AH vuông góc với DC tại H,CK vuông góc với AB tại K.a,Tứ giác AKCH là hình gì? b,Gọi E là giao điểm của BD và AH,F là giao điểm của BD và CK.Chứng minh rằng HDE=KBF và AF=CE c,AF cắt BC tại I và CE cắt AD tại J.Chứng minh IJ,HK,BD cùng đi qua 1 điểm
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD.
Chứng minh: a) Các tứ giác MNPQ, INKQ là hình bình hành
b) Các đường thẳng MP, NQ, IK đồng quy
cho bình bình hành MNPQ có MN = 2MQ và góc M=120đô .Goi I K lần lươt là trung điểm của MN và PQ,A là điểm đối xứng của Q qua M
a) Tứ giác MIKQ là hình gì ?vì sao
b) Chứng minh tam giác AMI là tam giacs đêù
Cho hình bình hành ABCD có góc D=60 độ, AB=2AD. Lấy H đối xứng với D qua A, E và F theo thứ tự là trung điểm của AB và CD. Chứng minh: ( vẽ hình giúp mình nhaa)
a, Tứ giác AEFD là hình thoi ? b, Tứ giác HDFE là hình thang cân?
c, Tứ giác AHBC là hình chữ nhật d, Cho AB = 8cm . Tính SAHBC
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành