Cho hình bình hành ABCD gọi O là giao điểm của 2 đường chéo AC và BD đường thẳng qua O không song song với AD và cắt AB tại M và CD tại M a) C/m M đối xứng với N qua O b)Chứng tỏ rằng tứ giác AMCN là hình bình hành
•Cho hình bình hành ABCD. Gọi I, K Theo Thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI , CK theo thứ tự ở M, N. Chứng minh rằng:
a) AI //CK
b) DM=MN=NB
c) Chứng minh CM đi qua trung điểm của AD, AN đi qua trung điểm của BC.
d) Chứng minh K, O, I thẳng hàng, với O là giao của 2 đường chéo AC và BD.
Cho hình bình hành ABCD có BC giao với AD tại O. Qua O kẻ đường thẳng bất kì cắt AB và CD theo thứ tự ở M, N. Chứng minh rằng:
a, AM = CN
b, Tứ giác MBND là hình gì? Tại sao?
c, AN // CM
Bài 1. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm của các cạnh BC và AD, O là giao điểm của AC và BD. Chứng minh: a) Tứ giác AMCN là hình bình hành. b) Ba điểm M , N, O thẳng hàng.
cho hình thang ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Qua điểm O vẽ đường thẳng a cắt 2 đường thẳng AD, BC lần lượt ở E và F, vẽ đường thẳng b cắt 2 cạnh AB, CD lần lượt tại K,H. Chứng minh EKFH là hình bình hành
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD.
Chứng minh: a) Các tứ giác MNPQ, INKQ là hình bình hành
b) Các đường thẳng MP, NQ, IK đồng quy
Cho hình bình hành ABCD, lấy M thuộc AB và N thuộc CD sao cho AM = CN
a/ CM: ABCD là hình bình hành
b/Lấy O là trung điểm . CM : M,O,N thẳng hàng
c/Vẽ đường thẳng bất kì đi qua O và cắt AD và BC tại I là K. Cm : IM//NK
Cho hình bình hành ABCD ( Â< 90), phân giác góc A và góc C cắt các cạnh đối diện ở E và F a) Tứ giác AECF là hình gì? Vì sao? b) Goi O là giao điểm của AC và BD. Chứng minh E và F đối xứng nhau qua O c) Phân giác góc B và góc D cắt phân giác góc C và góc A ở M; N; P; Q . Chứng minh rằng tứ giác MNPQ là hình chữ nhật d) Hình bình hành ABCD cần điều kiện gì để tứ giác MNPQ là hình vuông?