Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm của hai cạnh S4 và CD. a) Tìm giao tuyến của hai mặt phẳng (S4C) và (SBD).Chứng minh OM // (SCD). b) Tìm giao điểm của đường thẳng DM và mặt phẳng (SBC). c) Xác định thiết diện tạo bởi mặt phẳng (OMN) và hình chóp S.ABCD. d) Gọi G là trọng tâm tam giác SCD; T là một điểm trên cạnh BC sao cho BT=2TC. Chứng minh GT ||(SAB).
giài giúp em câu này với ạ
Cho đường tròn tâm O bán kính R và 2 điểm phân biệt C, D nằm ngoài đường tròn . Hãy dựng dây cung AB của đường tròn sao cho ABCD là hình bình hành
Câu 1: Cho hình bình hành ABCD. Phép tịnh tiến \(T_{\overrightarrow{DA}}\) biến
A. B thành C
B. C thànhB
C. C thành A
D. A thành D
Câu 2: Cho hình bình hành ABEF. Gọi D,C lần lượt là trung điểm của AF và BF, O là giao điểm của AC và BD, I là giao điểm của FC và DE. Phép tịnh tiến \(T_{\overrightarrow{FI}}\) biến tam giác DIF thành tam giác nào sau đây:
A. \(\Delta AOD\)
B. \(\Delta CIE\)
C. \(\Delta OBC\)
D. \(\Delta OCI\)
Câu 3: Trong mặt phẳng, phép tịnh tiến \(T_{\overrightarrow{v}}\left(A\right)=B\) và \(T_{\overrightarrow{v}}\left(C\right)=D\) với \(\left(\overrightarrow{v}\ne\overrightarrow{0}\right)\) Mệnh đề nao sau đây sai?
A. \(\overrightarrow{AC}=\overrightarrow{BD}\)
B. \(\overrightarrow{AB}=\overrightarrow{CD}\)
C. \(\overrightarrow{AD}=\overrightarrow{CB}\)
D. \(AB=CD\)
Câu 4: Trong mặt phẳng tọa độ Oxy cho \(\overrightarrow{v}=\left(3;1\right)\). Tìm tọa độ của điểm \(M'\) là ảnh của điểm \(M\left(-2;1\right)\) qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}\)
A. \(M'\left(5;0\right)\)
B. \(M'\left(1;2\right)\)
C. \(M'\left(-5;0\right)\)
D. \(M'\left(5;2\right)\)
Câu 5: Trong mặt phẳng tọa độ Oxy cho điểm \(M\left(-2;1\right)\). Tìm tọa độ điểm N sao cho M là ảnh của N qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}=\left(-3;2\right)\)
A. N(1;3)
B. N(1;-1)
C. N(-1;-1)
D. N(-5;3)
Câu 6: Trong mặt phẳng tọa độ Oxy, cho hai điểm M(2;3) và N(1;-1). Phép tịnh tiến theo véc tơ \(\overrightarrow{v}\) biến điểm M thành điểm N. Khi đó ta có:
A.\(\overrightarrow{v}=\left(3;2\right)\)
B. \(\overrightarrow{v}=\left(-1;-4\right)\)
C. \(\overrightarrow{v}=\left(1;4\right)\)
D. \(\overrightarrow{v}=\left(-3;2\right)\)
Câu 7: Trong mặt phẳng Oxy và đường tròn \(\left(C\right):x^2+y^2-2x+4y-4=0\). Viết phương trình đường tròn (C') là ảnh của (C) qua \(T\overrightarrow{v}\)
A. \(\left(x-4\right)^2+\left(y-1\right)^2=4\)
B. \(\left(x+4\right)^2+\left(y+1\right)=9\)
C. \(\left(x-4\right)^2+\left(y-1\right)^2=9\)
D. \(x^2+y^2+8x+2y-4=0\)
Câu 8: Trong mặt phẳng tọa độ, xác định của đường thẳng \(\left(d\right):x+y-2=0\) qua phép tịnh tiến theo véc tơ \(\overrightarrow{v}=\left(-3;0\right)\)
A. x+y+3=0
B. x-y-2=0
C. x+y+2=0
D. x+y+1=0
2. Cho \(\Delta ABC\) có trọng tâm G và nội tiếp trong đường tròn (O) B, C cố định. Dựng hình bình hành BGCD. Tìm quỹ tích điểm D khi A thay đổi trên (O)
Cho hình vuông ABCD tâm O. Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc quay 90o và phép tịnh tiến theo vectơ biến đoạn thẳng AB thành đoạn thẳng nào trong các đoạn thẳng sau?
A. AB
B. CB
C. DA
D. BC
Cho hình vuông ABCD, tâm O. Tìm ảnh của tam giác ABC qua phép quay tâm O góc -45 độ
Trong mặt phẳng tọa độ Oxy, cho điểm A (3;5) , D( 5;2). Đường thẳng (d) có phương trình: x + 2y - 5 = 0, đường tròn (C') tâm I có phương trình: (x+1)2 + (y-2)2 = 36
a) Viết phương trình đường thẳng (d') đối xứng với (d) qua trục Oy
b) Cho điểm B thuộc (d) , điểm C thuộc (C') sao cho ACBD là hình bình hành.
Mình phát hiện được điểm I thuộc (d'), điểm D thuộc (C') và IA vuông góc với IC, nhưng không chứng minh được. Mọi người giúp mình với nhé.
Cho hai điểm A, B và đường tròn tâm O không có điểm chung với đường thẳng AB.
a. Dựng ảnh (O') là ảnh của (O) qua phép tịnh tiến theo véc tơ AB
b. Cho M di động trên (O) dựng hình bình hành MABN. CMR: Điểm N chạy trên đường tròn cố định khi M thay đổi.
A-C-B-D-D-C-B-C