Cho tứ diện ABCD. Cho I và J tương ứng là trung điểm của BC và AC, M là một điểm tùy y trên cạnh AD
a) Tìm giao tuyến d của hai mặt phẳng (MIJ) và (ABD)
b) Gọi N là giao điểm của BD với giao tuyến d, K là giao điểm của IN và JM. Tìm tập hợp điểm K khi M di động trên đoạn AD (M không phải là trung điểm của AD)
c) Tìm giao tuyến của hai mặt phẳng (ABK) và (MIJ)
Câu 1. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Cho M,N,P lần lượt là trung điểm của AB,SA,SC.
a) Tìm giao tuyến của hai mặt phẳng (MNC) và (SAD).
b) Chứng minh OE//(SAB)
Cho tứ diện ABCD.Gọi I,J lần lượt là trung điểm của các cạnh AB và BC
a)Xác định giao tuyến của hai mặt phẳng (IJD) và (ACD)
b)Lấy một điểm E trên cạnh AD.Hãy tìm giao tuyến của hai mặt phẳng (IJE) và (ACD),suy ra giao điểm của đường thẳng CD và mặt phẳng (IJE),thiết diện tạo bởi (IJE) và tứ diện ABCD
cho 2 hình thang không là hình bonhf hành ABCD,ABEF chung đáy lớn AB không cùng nằm trong 1 mặt phẳng
a) xđ giao tuyến của các cặp mặt phẳng :AFC và BFD , BCE và ADF
b) lấy M trên DF. tìm giao điểm của đt AM và mp BCE
c) cm: AC và BF chéo nhau
Cho hình chóp A.ABCD có đáy là hình thang ABCD với đáy AD và BC. Biết AD = a. BC = b. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD lần lượt tại P, Q
a) Chứng minh MN song song với PQ
b) Giả sử Am cắt BP tại E; CQ cắt DN tại F. Chứng minh rằng EF song song với MN và PQ. Tính EF theo a và b ?
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .
cho tứ diện ABCD và 3 điểm P , Q lần lượt là trung điểm của AB và CD ; điểm R nằm trên cạnh BC sao cho BR=2RC . Gọi S là giao điểm của mặt phẳng (PQR) và cạnh AD . chứng minh rằng AS=2SD .