Bài 2. Tam giác bằng nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho góc xOy. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a) AD = BC

b) \(\Delta EAB=\Delta ECD\)

c) OE là tia phân giác của góc xOy.

Kiều Sơn Tùng
21 tháng 9 2023 lúc 0:11

Tham khảo:

a) Xét \(\Delta OAD\) và \(\Delta OCB\), ta có :

OD = OB

\(\widehat{A}\) chung

OA = OC 

\(\Rightarrow \Delta OAD=\Delta OCB\) (c-g-c )

\( \Rightarrow AD = BC\)(2 cạnh tương ứng )

b) Vì \(\Delta OAD=\Delta OCB\) nên \(\widehat{OAD}=\widehat{OCB}; \widehat{D}=\widehat{B}\) ( 2 góc tương ứng)

Mà \(\widehat{OAD}+\widehat{BAD}=180^0\) ( 2 góc kề bù)

\(\widehat{OCB}+\widehat{BCD}=180^0\) ( 2 góc kề bù)

Do đó, \(\widehat{BAD}=\widehat{BCD}\)

Vì \(OA+AB=OB; OC+CD=OD\)

Mà \(OC = OA, OD = OB\)

\(\Rightarrow AB=CD\)

Xét \(\Delta EAB\) và \(\Delta ECD\), ta có:

\(\widehat {ABE} = \widehat {CDE}\)

\(AB = CD\)

\(\widehat {BAE} = \widehat {DCE}\)

\(\Rightarrow \Delta EAB=\Delta ECD\) (g-c-g)

c) Vì \(\Delta EAB=\Delta ECD\) nên EB = ED ( 2 cạnh tương ứng)

Xét \(\Delta OBE\) và \(\Delta ODE\), ta có :

 EB = ED

OB = OD

OE chung

\( \Rightarrow \Delta OBE=\Delta ODE \)  (c.c.c)

\( \Rightarrow \widehat{BOE}=\widehat{DOE}\) ( 2 góc tương ứng)

\( \Rightarrow \) OE là phân giác \(\widehat {xOy}\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết