Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho f(x) = x2 lnx và g(x) = xlnx. Tính f'(x) và \(\int g\left(x\right)dx\).

datcoder
29 tháng 10 lúc 23:12

Ta có \(f'\left( x \right) = \left( {{x^2}\ln x} \right)' = 2x\ln x + {x^2}.\frac{1}{x} = 2x\ln x + x = 2g\left( x \right) + x\)

Suy ra \(g\left( x \right) = \frac{1}{2}\left[ {f'\left( x \right) - x} \right] \Rightarrow \int {g\left( x \right)dx}  = \frac{1}{2}\int {\left[ {f'\left( x \right) - x} \right]dx}  = \frac{1}{2}\left[ {f\left( x \right) - \frac{{{x^2}}}{2}} \right] + C\),  tức là \(\int {x\ln xdx}  = \frac{1}{2}\left( {{x^2}\ln x - \frac{{{x^2}}}{2}} \right) + C\)