Bài 3. Tiếp tuyến của đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho đường tròn (O; R) đường kính AB và các đường thẳng m, n, p lần lượt tiếp xúc với đường tròn tại A, B, C (Hình 43).

Chứng minh:

a) AD + BE = DE;

b) \(\widehat{COD}=\dfrac{1}{2}\widehat{COA}\) và \(\widehat{COE}=\dfrac{1}{2}\widehat{COB}\);

c) Tam giác ODE vuông;

d) \(\dfrac{OD.OE}{DE}=R\).

datcoder
30 tháng 9 lúc 23:21

a) Do \(DC,DA\) cùng là tiếp tuyến của đường tròn \(\left( O \right)\) nên \(DA = DC\).

Do \(EC,EB\) cùng là tiếp tuyến của đường tròn \(\left( O \right)\) nên \(CE = BE\).

Lại có: \(DC + CE = DE\) suy ra \(DA + EB = DE\).

b) Do \(DC,DA\) cùng là tiếp tuyến của đường tròn \(\left( O \right)\) nên \(OD\) là tia phân giác của góc \(COA\).

Suy ra \(\widehat {COD} = \frac{1}{2}\widehat {COA}\).

Do \(EC,EB\) cùng là tiếp tuyến của đường tròn \(\left( O \right)\) nên \(OE\) là tia phân giác của góc \(COB\).

Suy ra \(\widehat {COE} = \frac{1}{2}\widehat {COB}\).

c) Ta có: \(\widehat {COA} + \widehat {COB} = 180^\circ \) (hai góc kề bù).

Suy ra \(\frac{1}{2}\left( {\widehat {COA} + \widehat {COB}} \right) = \frac{1}{2}.180^\circ  = 90^\circ  \Rightarrow \frac{1}{2}\widehat {COA} + \frac{1}{2}\widehat {COB} = 90^\circ .\)

Mà \(\widehat {COD} = \frac{1}{2}\widehat {COA}\),\(\widehat {COE} = \frac{1}{2}\widehat {COB}\) nên \(\widehat {COD} + \widehat {COE} = 90^\circ \)  hay \(\widehat {DOE} = 90^\circ \).

Vậy tam giác \(ODE\) vuông tại \(O\).

d) Vì \(DE\) là tiếp tuyến của \((O)\) nên \(DE \perp CO\)

\(\Rightarrow \widehat{DCO} = 90^\circ\)

Xét \(\Delta ODE\) và \(\Delta CDO\) có:

\(\widehat{DOE} = \widehat{DCO} = 90^\circ\)

\(\widehat{ODE}\) (góc chung)

\(\Rightarrow \Delta ODE \backsim \Delta  CDO\) (g.g)

\(\Rightarrow \frac{OE}{OC} = \frac{DE}{OD}\)

\(\Rightarrow OE \cdot OD = DE \cdot OC\)

\(\Rightarrow OE \cdot OD = R\) (đpcm)