cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm \(\widehat{OAB}\)= \(\widehat{CHA}\).
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Cho nửa đường tròn tâm O đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Lấy điểm E là 1 điểm thuộc nửa đường tròn ( E khác với A và B). Tiếp tuyến của nửa đường tròn tại E cắt Ax và By lần lượt tại C và D.
Chứng minh : CD=AC+BD, góc COD=90 độ,AC.BD
Trên đường tròn tâm O đường kính AB, lấy điểm C sao cho . Trên nữa mặt phẳng có bờ là đường thẳng AB không chứa điểm C, lấy điểm D thuộc đường tròn (O).
a) Tính số đo của góc ADC. b) Tính số đo của góc AOC.
c) Vẽ tia Cm là tiếp tuyến của đường tròn (O) tại C. Tính số đo của góc ACm , biết góc ACm là góc nhọn.
Cho đường tròn tâm (O) đường kính AB. Gọi M là điểm thuộc cung AB (M≠≠A, M≠≠B) và I là điểm thuộc đoạn OA (I≠≠A, I≠≠O). Trên nửa mặt phẳng bờ AB có chứa điểm M, kẻ các tia tiếp tuyến Ax, By với đường tròn (O). Qua M kẻ đường thẳng vuông góc với IM, đường thẳng này cắt Ax, By lần lượt tại C,D. Gọi M là giao điểm của AM với IC, F là giao điểm của BM với ID. Chứng minh rằng:
a, Tứ giác MIEF là tư giác nội tiếp.
b, EF song song vớiAB.
c,OM là tiếp tuyến chung của đươnmg tròn ngoại tiếp tam giác CEM và DFM
Cho nửa đường tròn đường kính AB. Gọi C là một điểm chạy trên nửa đường tròn đó. Trên AC lấy điểm D sao cho AD = CB. Qua A kẻ tiếp tuyến với nửa đường tròn rồi lấy AE = AB (E và C cùng thuộc một nửa mặt phẳng bờ AB)
a) Tìm quỹ tích điểm D
b) Tính diện tích phần chung của hai nửa đường tròn đường kính AB và AE
Đường tròn tâm (O) bán kính AB. Trên đường thẳng AB lấy điểm C sao cho B nằm giữa A,C. Kẻ tiếp tuyến CK với đường tròn (O) (K là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CK tại H. Gọi I là giao điểm OH và AK, J là giao điểm của BH với đường tròn (O) (J không trùng với B) a) Chứng minh AJ.HB = AH.AB b) Chứng minh 4 điểm B, O, I, J cùng nằm trên một đường tròn.
Cho đường tròn tâm (O) đường kính AB.Trên tia đối của BA lấy điểm C (AB<BC).Vẽ đường tròn tâm (O') đường kính BC.Gọi I là trung điểm của AC.Vẽ dây MN vuông góc với dây AC tại I, MC cắt đường tròn tâm O tại D.
a)Tứ giác AMCN là hình gì?vì sao?
b) Chứng minh tứ giác NIDC nội tiếp .
c)Xác định vị trí tương đối của ID và đường tròn tâm (O) với đường tròn tâm (O')
Cho nữa đường tròn (O), đường kính AB. Gọi C và D là hai điểm trên nữa đường tròn ( C thuộc cung AD) , AD và BD cắt nhau ở E, AD và BC cắt nhau ở F. Chứng minh: a. Tứ giác ECFD nội tiếp được một đường tròn. b Góc AEF= góc ADC C. Cho góc AOC =50° và OC= 3cm, tính diện tích hình quạt tròn AOC. Giúp mình gấp với ạ