Cho điểm M nằm ngoài đường tròn (O) .Qua M vẽ các tiếp tuyến MA,MB ( A,B là các tiếp điểm ) và đường thẳng d không đi qua O cắt đường tròn (O) tại C,D ( C nằm giữa M và D). Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I.chứng minh rằg: a)tứ giác MAOB nội tiếp đường tròn b) góc MAC = góc ADC từ đó suy ra MC.MD=MH.MO c)CI là tia phân giác của MCH
a,vì AM và BM là hai tiếp tuyến đường tròn (O) căt nhau tại M nên
MA\(\perp\)AO ; MB\(\perp\)OB =>^MAO=^MBO=900
Mà ^MAO+^MBO=900+900=1800
=>Tứ giác AOBM nội tiếp (tổng hai góc đối bằng 1800)
b,Có ^MAC=^MDA (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC )
xét \(\Delta MAC\) và \(\Delta MDA\)
^AMC chung
^MAC=^MDA
=>\(\Delta MAC\) đồng dạng \(\Delta MDA\)(g.g)
=>\(\dfrac{AM}{MC}=\dfrac{MD}{AM}\Rightarrow AM^2=MC.MD\)(1)
Vì AM và BM là 2 tiếp tuyến đường tròn(O)cắt nhau tại M nên MA=MB. Lại có AO=BO (bán kính )
=>MO là đường trung trực AB =>AH\(\perp MO\)
Xét \(\Delta AOM\) vuông tại A có AH là đường cao
=> AM2=MH.MO(2)
Từ (1),(2) suy ra MC.MD=MH.MO
Có ai lm giúp mk bài này với,mk cần gấp