Tứ giác ABDC nội tiếp (O) nên \(\widehat {ABD} + \widehat {ACD} = {180^o}\), mà \(\widehat {ICA} + \widehat {ACD} = {180^o}\) (hai góc kề bù) nên \(\widehat {IBD} = \widehat {ICA}\)
Tứ giác ABDC nội tiếp (O) nên\(\widehat {CAB} + \widehat {CDB} = {180^o}\), mà \(\widehat {CAB} + \widehat {IAC} = {180^o}\) (hai góc kề bù) nên \(\widehat {IAC} = \widehat {IDB}\)
Tam giác IAC và tam giác IDB có:
Góc I chung
\(\widehat {ICA} = \widehat {IBD}\) (cmt).
Do đo, $\Delta IAC\backsim \Delta IDB\Rightarrow \frac{IA}{IC}=\frac{ID}{IB}\Rightarrow IA.IB=IC.ID$.
Đúng 0
Bình luận (0)