Bài 14. Cung và dây của một đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho điểm C nằm trên đường tròn (O). Đường trung trực của đoạn OC cắt (O) tại A. Tính số đo của các cung \(\stackrel\frown{ACB}\) và \(\stackrel\frown{ABC}\).

datcoder
20 tháng 10 lúc 23:30

AB là đường trung trực của AB của OC nên AC = OA (tính chất đường trung trực)

mà OA = OC = R nên AC = OA = OC

hay \(\Delta \,ACO\) là tam giác đều.

Do đó: \(\widehat{AOC}=60{}^\circ \) (tính chất của tam giác đều) \(\Rightarrow \) sđ \(\overset\frown{AC}=60{}^\circ \)

Tương tự ta có: sđ \(\overset\frown{BC}=60{}^\circ \)

Suy ra:

sđ \(\overset\frown{ACB}=\)sđ \(\overset\frown{AC}\) + sđ \(\overset\frown{BC}=60{}^\circ +60{}^\circ =120{}^\circ \)

\(\overset\frown{ABC}\) là cung lớn có chung hai mút A, C với cung nhỏ \(\overset\frown{AC}\)

nên sđ \(\overset\frown{ABC}=360{}^\circ -\) sđ\(\overset\frown{AC}=360{}^\circ -60{}^\circ =300{}^\circ \)