Cho ΔABC vuông tại A nội tiếp (O) đường kính BC (AB<AC). trên AC lấy điểm M, BM cắt (O) tại D, CD cắt AB tại E.
a) CM EAMD nội tiếp và EA.EB=ED.EC
b) Gọi N là giao điểm của đường tròn tâm I ngoại tiếp ΔDMC với BC, AN cắt (I) tại F. Chứng minh BE song song với DF và 3 điểm E,M,N thẳng hàng.
c) Vẽ EP là tiếp tuyến của (O) với P là tiếp điểm, đường thẳng PM cắt (O) tại Q chứng minh EQ là tiếp tuyến của (O)