Cho bốn điểm A(0; 1; 3), B(– 1; 0; 5), C(2; 0; 2) và D(1; 1; – 2).
a) Tìm toạ độ của hai vectơ \(\overrightarrow{AB},\overrightarrow{AC}\) và một vectơ vuông góc với cả hai vectơ đó.
b) Viết phương trình tham số và phương trình chính tắc của hai đường thẳng AB và AC.
c) Viết phương trình tổng quát của mặt phẳng (ABC).
d) Chứng minh rằng bốn điểm A, B, C, D không đồng phẳng.
e) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).
a) Ta có: \(\overrightarrow {AB} = \left( { - 1; - 1;2} \right),\overrightarrow {AC} = \left( {2; - 1; - 1} \right)\).
Một vectơ vuông góc với cả hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) là: \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).
Ta có: \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&2\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\2&{ - 1}\end{array}} \right|} \right) = \left( {3;3;3} \right)\).
b) Đường thẳng AB đi qua điểm A(0; 1; 3) và nhận \(\overrightarrow {AB} = \left( { - 1; - 1;2} \right)\) làm một vectơ chỉ phương nên:
+ Phương trình tham số của đường thẳng AB: \(\left\{ \begin{array}{l}x = - t\\y = 1 - t\\z = 3 + 2t\end{array} \right.\) (t là tham số).
+ Phương trình chính tắc của đường thẳng AB: \(\frac{x}{{ - 1}} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{2}\).
Đường thẳng AC đi qua điểm A(0; 1; 3) và nhận \(\overrightarrow {AC} = \left( {2; - 1; - 1} \right)\) làm một vectơ chỉ phương nên:
+ Phương trình tham số của đường thẳng AC: \(\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 3 - t\end{array} \right.\) (t là tham số).
+ Phương trình chính tắc của đường thẳng AC: .
c) Mặt phẳng (ABC) đi qua A(0; 1; 3) và nhận \(\frac{1}{3}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;1;1} \right)\) làm một vectơ pháp tuyến nên phương trình tổng quát mặt phẳng (ABC) là:
\(x + y - 1 + z - 3 = 0 \Leftrightarrow x + y + z - 4 = 0\)
d) Thay tọa độ điểm D(1; 1; -2) vào mặt phẳng (ABC) ta có: \(1 + 1 + \left( { - 2} \right) - 4 = - 4 \ne 0\) nên điểm D không thuộc mặt phẳng (ABC). Do đó, bốn điểm A, B, C, D không đồng phẳng.
e) Ta có: \(d\left( {D,\left( {ABC} \right)} \right) = \frac{{\left| {1 + 1 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{4\sqrt 3 }}{3}\).