Lời giải:
Đặt \(\sqrt{x}=a(a\geq 0)\)
Khi đó:\(M=\frac{a^3-4a^2-a+4}{2a^3-14a^2+28a-16}\)
a) Điều kiện để M có nghĩa:
\(2a^3-14a^2+28a-16\neq 0\Leftrightarrow 2a^2(a-1)-12a(a-1)+16(a-1)\neq 0\)
\(\Leftrightarrow (a-1)(2a^2-12a+16)\neq 0\)
\(\Leftrightarrow (a-1)[2a(a-4)-4(a-4)]\neq 0\)
\(\Leftrightarrow 2(a-1)(a-2)(a-4)\neq 0\Leftrightarrow a\neq 1; a\neq 2; a\neq 4\)
Suy ra điều kiện để M có nghĩa là $x\geq 0; x\neq 1; x\neq 4; x\neq 16$
b)
\(M=\frac{a^3-4a^2-a+4}{2a^3-14a^2+28a-16}=\frac{a^2(a-4)-(a-4)}{2(a-1)(a-2)(a-4)}\)
\(=\frac{(a^2-1)(a-4)}{2(a-1)(a-2)(a-4)}=\frac{(a-1)(a+1)(a-4)}{2(a-1)(a-2)(a-4)}=\frac{a+1}{2(a-2)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)
c)
Để M nhận giá trị nguyên thì \(\sqrt{x}+1\vdots 2(\sqrt{x}-2)\)
\(\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2\)
\(\Rightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2\)
\(\Rightarrow 3\vdots \sqrt{x}-2\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}\)
\(\Rightarrow \sqrt{x}\in\left\{1; 3; 5\right\}\Rightarrow x\in\left\{1;9;25\right\}\)
Thử lại thấy đều thỏa mãn.