Bài 3. Tiếp tuyến của đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

 Cho ba điểm A, B, C thẳng hàng, trong đó B nằm giữa A và C. Đường tròn (O) tiếp xúc với đường thẳng AB tại điểm C. Chứng minh AO2 + BC2 = BO+ AC2.

datcoder
30 tháng 9 lúc 23:13

Vì đường thẳng \(AB\) tiếp xúc với đường tròn \(\left( O \right)\) tại \(C\) nên \(OC \bot AB\). Suy ra tam giác \(OBC\) vuông tại \(C\), tam giác \(OAC\) vuông tại C.

Áp dụng định lý Pythagore vào tam giác \(OAC\) vuông tại \(C\), ta có:

\(O{A^2} = O{C^2} + A{C^2} \Rightarrow O{C^2} = O{A^2} - A{C^2}\,\,\left( 1 \right)\).

Áp dụng định lý Pythagore vào tam giác \(OBC\) vuông tại \(C\), ta có:

\(O{B^2} = O{C^2} + B{C^2} \Rightarrow O{C^2} = O{B^2} - B{C^2}\,\,\,\left( 2 \right)\).

Từ (1) và (2) suy ra \(O{A^2} - A{C^2} = O{B^2} - B{C^2} \Rightarrow O{A^2} + B{C^2} = O{B^2} + A{C^2}\).