điều kiện cho \(A\) là \(\left(x\ne\dfrac{-1}{2}\right)\)cho \(B\) là \(x\ne1\)
ta có : \(A=\dfrac{1}{\sqrt{4x^2+4x+1}}=\dfrac{1}{\sqrt{\left(2x+1\right)^2}}=\dfrac{1}{\left|2x+1\right|}\)
\(\Rightarrow\left[{}\begin{matrix}A=\dfrac{1}{2x+1}\left(x\ge\dfrac{-1}{2}\right)\\A=\dfrac{1}{-\left(2x+1\right)}\left(x< \dfrac{-1}{2}\right)\end{matrix}\right.\) \(\Rightarrow A\) nguyên \(\Leftrightarrow1⋮2x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) vậy \(x=0;x=-1\) thì \(A\) nguyên (1)
ta có : \(B=\dfrac{2x-2}{\sqrt{x^2-2x+1}}=\dfrac{2x-2}{\sqrt{\left(x-1\right)^2}}=\dfrac{2x-2}{\left|x-1\right|}\)
\(\Rightarrow\left[{}\begin{matrix}B=\dfrac{2x-2}{x-1}\left(x\ge1\right)\\B=\dfrac{2x-2}{-\left(x-1\right)}\left(x< 1\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}B=2\left(x\ge1\right)\\B=-2\left(x< 1\right)\end{matrix}\right.\)
\(\Rightarrow B\) nguyên với mọi giá trị của \(x\ne1\)
vậy \(x\in R\backslash\left\{1\right\}\) thì \(B\) nguyên (2)
từ (1) và (2) ta có \(x=0;x=-1\) thì cả \(A\) và \(B\) đều nguyên