a) \(A=\left(\dfrac{1}{1+\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1-\left(\sqrt{x}+1\right)}{x-1}:\left(\dfrac{\sqrt{x}+1-\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(=\dfrac{-2}{x-1}\cdot\dfrac{1-x}{2\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)
\(=\dfrac{1-\sqrt{x}+\sqrt{x}}{\sqrt{x}-x}\)
\(=\dfrac{1}{\sqrt{x}-x}\)
b) thay \(x=7-4\sqrt{3}\) vào A, ta được:
\(A=\dfrac{1}{\sqrt{7-4\sqrt{3}}-\left(7-4\sqrt{3}\right)}=\dfrac{1}{2-\sqrt{3}-7+4\sqrt{3}}=\dfrac{1}{3\sqrt{3}-5}\)
c) Đk: x > 0, x khác 1
\(A=-\dfrac{1}{2}\) \(\Leftrightarrow\dfrac{1}{\sqrt{x}-x}=-\dfrac{1}{2}\Leftrightarrow\sqrt{x}-x=-2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=-1\left(vn\right)\end{matrix}\right.\) \(\Leftrightarrow x=4\) (N)
Kl:........