Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hà Uyên

Cho 3 điểm \(A\left(1;2;-3\right);B\left(2;4;5\right);C\left(3;6;7\right)\) và mặt phẳng \(\left(P\right):x+y+z-3=0\)

Tìm trên mặt phẳng (P) điểm D sao cho vecto \(\overrightarrow{v}=\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\) có độ dài ngắn nhất

Võ Thị Hoài Linh
13 tháng 5 2016 lúc 21:58

Gọi G là điểm sao cho \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) (G là trọng tâm của tam giác ABC)

Khi đó \(G\left(2;4;3\right)\) và \(\overrightarrow{v}=\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=3\overrightarrow{DG}\)

Vậy điểm \(D\in\left(P\right)\) mà \(\left|\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right|\) bé nhất khi và chỉ khi D là hình chiếu của G trên mặt phẳng (P). Khi đó vecto \(\overrightarrow{GD}\) cùng phương với vecto pháp tuyến của (P) và điểm D nằm trên mặt phẳng (P) nên ta có hệ :

\(\begin{cases}\frac{x-2}{1}=\frac{y-4}{1}=\frac{z-3}{1}\\x+y+z-3=0\end{cases}\)

Giải hệ ta được : x = 0 ;y = 2; z = 1

Vậy điểm D cần tìm là \(D\left(0;2;1\right)\)


Các câu hỏi tương tự
Mai Linh
Xem chi tiết
Phạm Đức Trọng
Xem chi tiết
Lê Ngọc Phương Linh
Xem chi tiết
Đỗ Hạnh Quyên
Xem chi tiết
trầnchâu
Xem chi tiết
Nguyễn Quốc Cường
Xem chi tiết
minh ly anh
Xem chi tiết
Nguyễn Vi
Xem chi tiết
Trần Thị Quỳnh Vy
Xem chi tiết