cho 2 đường thẳng a và b cắt nhau tại điểm O và đường thẳng c cắt mặt phẳng (a , b) tại I khác O . Gọi M là điểm di động trên c và khác I . Chứng minh rằng giao tuyến của các mặt phẳng (M , a) , (M , b) nằm trên một mặt phẳng cố định .
cho 2 đường thẳng a và b cắt nhau tại điểm O và đường thẳng c cắt mặt phẳng(a , b) tại điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M , a) , (M , b) nằm trên 1 mặt phẳng cố định .
cho 2 đường thẳng a và b cắt nhau tại O và đường thẳng c cắt mặt phẳng (a,b) tại I khác O . Gọi M là điểm di động trên c và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M,a) và (M,b) cùng nằm trên một mặt phẳng cố định .
cho 2 đường thẳng a và b cắt nhau tại O và đường thẳng c cắt mp(a,b) ở điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M,a) và (M,b) nằm trên một mặt phẳng cố định .
cho 2 đường thẳng a và b cắt nhau tại O và đường thẳng c cắt mp(a,b) ở điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M,a) và (M,b) nằm trên một mặt phẳng cố định .
cho 2 đường thẳng a và b cắt nhau tại O và đường thẳng c cắt mp(a,b) ở điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M,a) và (M,b) nằm trên một mặt phẳng cố định .
cho 2 đường thẳng a và b cắt nhau tại O và đường thẳng c cắt mp(a,b) ở điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M,a) và (M,b) nằm trên một mặt phẳng cố định .
cho 2 đường thẳng a và b cắt nhau tại O và đường thẳng c cắt mp(a,b) ở điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M,a) và (M,b) nằm trên một mặt phẳng cố định .
cho hình bình hành (ABCD) nằm trên mặt phẳng (P) và 1 điểm S nằm ngoài mặt phẳng (P) . Gọi M là điểm nằm giữa S và A ; N là điểm nằm giữa S và B ; giao điểm của 2 đường thẳng AC và BD là O .
a) tìm giao điểm của mặt phẳng (CMN) với O đường thẳng SO .
b) xác định giao tuyến của 2 mặt phẳng (SAD) và (CMN) .