Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Linh

BT1: Tính

5) \(\dfrac{1}{1+\dfrac{2009}{2011}+\dfrac{2009}{2010}}+\dfrac{1}{1+\dfrac{2010}{2009}+\dfrac{2010}{2011}}+\dfrac{1}{1+\dfrac{2011}{2009}+\dfrac{2011}{2010}}\)

Chu Quang Lượng
13 tháng 2 2019 lúc 12:36

=\(\dfrac{1}{2009.\left(\dfrac{1}{2009}+\dfrac{1}{2011}+\dfrac{1}{2010}\right)}+\dfrac{1}{2010.\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2011}\right)}+\dfrac{1}{2011.\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2010}\right)}\)\(=\dfrac{1}{2009}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2010}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2011}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)\)

\(=\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right):\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)=1\)