Cho \(a,b,c\in R;a\ne0;z_1,z_2\) là hai nghiệm của phương trình \(az^2+bz+c=0\)
Hãy tính \(z_1+z_2\) và \(z_1.z_2\) theo các hệ số a, b, c ?
cho 2 số phức z1, z2 thỏa mãn |z1+2+3i|=5, |z2+2+3i|=3. Goi m0 là giá trị lớn nhất của phần thực số phức \(\frac{z_1+2+3i}{z_2+2+3i}\). tìm m0
Cho \(z=a+bi\) là một số phức. Hãy tìm một phương trình bậc hai với hệ số thức nhận \(z\) và \(\overline{z}\) làm nghiệm ?
Chứng minh rằng hai số phức liên hợp \(z\) và \(\overline{z}\) là hai nghiệm của một phương trình bậc hai với hệ số thực ?
tìm phần thực và phần ảo của số phức z ;
Z^\(\dfrac{4}{3}\)+2i=0
Giải các phương trình sau trên tập hơn số phức :
a) \(z^4+z^2-6=0\)
b) \(z^4+7z^2+10=0\)
Giải các phương trình sau trên tập hợp số phức :
a) \(-3z^2+2z-1=0\)
b) \(z^4+7z^2+10=0\)
Giải phương trình :
\(\left(z-i\right)^2+4=0\) trên tập số phức
Cho số z có phần thực dương phần ảo âm thỏa mãn 5IzI<I5z-4+8iI. Tìm GTNN của P=2\(\sqrt{2}\)Iz+iI+\(\sqrt{17}\)Iz-2I+5IzI