Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều quay của kim đồng hồ. Phép quay thuận chiều 45° biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H.
a) Vẽ đa giác EAFBGCHD.
b) Đa giác EAFBGCHD có phải là một bát giác đều hay không? Vì sao?
a) + Vẽ đường tròn (O). Trên đường tròn vẽ hình vuông ABCD sao cho các đỉnh A, B, C, D theo thứ tự ngược chiều kim đồng hồ.
+ Vẽ điểm E thuộc đường tròn (O) sao cho \(\widehat {AOE} = {45^o}\) và tia OA quay thuận theo chiều kim đồng hồ đến tia OE.
+ Xác định các điểm F, G, H tương tự như xác định điểm E. Nối A với E, E với D, D với H, H với C, C với G, G với B, B với F, F với A ta được đa giác EAFBGCHD.
b) Vì A, E, D, H, C, G, B, F cùng thuộc (O) nên
\(OA = OE = OD = OH = OC = OG = OB = OF\)
Vì ABCD là hình vuông nên
\(\widehat {AOD} = \widehat {DOC} = \widehat {BOC} = \widehat {BOA} = {90^o}\)
Lại có: \(\widehat {AOE} = \widehat {BOF} = \widehat {COG} = \widehat {DOH} = {45^o}\) nên \(\widehat {DOE} = \widehat {AOF} = \widehat {BOG} = \widehat {COH} = {45^o}\)
Ta có:
\(\Delta AOE = \Delta DOE = \Delta DOH = \Delta COH = \Delta COG = \Delta BOG = \Delta BOF = \Delta AOF\left( {c.g.c} \right)\)
Suy ra:
+) \(AE = ED = DH = HC = CG = BG = BF = FA\)
+) \(\widehat {OAE} = \widehat {OEA} = \widehat {OED} = \widehat {ODE} = \widehat {ODH} = \widehat {OHD} = \widehat {OHC} = \widehat {OCH} = \widehat {OCG} = \widehat {OGC} = \widehat {OGB} = \widehat {OBG}\)\( = \widehat {OBF} = \widehat {OFB} = \widehat {OFA} = \widehat {FAO}\)
Do đó, \(\widehat {FAE} = \widehat {AED} = \widehat {EDH} = \widehat {DHC} = \widehat {HCG} = \widehat {CGB} = \widehat {GBF} = \widehat {BFA}\)
Đa giác EAFBGCHD có
\(\widehat {FAE} = \widehat {AED} = \widehat {EDH} = \widehat {DHC} = \widehat {HCG} = \widehat {CGB} = \widehat {GBF} = \widehat {BFA}\) và \(AE = ED = DH = HC = CG = BG = BF = FA\) nên đa giác EAFBGCHD là hình bát giác đều.