Bài 2
a) Ta có
S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
S = \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Vì \(\dfrac{1}{13}< \dfrac{1}{12}\)
\(\dfrac{1}{14}< \dfrac{1}{12}\)
\(\dfrac{1}{15}< \dfrac{1}{12}\)
=> \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}.3\)
Lại có
\(\dfrac{1}{61}< \dfrac{1}{60}\)
\(\dfrac{1}{62}< \dfrac{1}{60}\)
\(\dfrac{1}{63}< \dfrac{1}{60}\)
=> \(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}.3\)
=> S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) < \(\dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
= \(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\) = \(\dfrac{1}{2}\)
=> đpcm
Ta có
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{1}-\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{2016}\)
2016 = x + 2
x = 2016 - 2
x = 2014
Vậy x = 2014 là giá trị cần tìm
b) Ta có
S = 1/2 + 1/22 + 1/23 + ... + 1/220
2S = 1 + 1/2 + 1/22 + ... + 1/219
=> 2S - S = 1 - 1/220
S = 1 - 1/220 < 1
=> Ta có đpcm