Chương III : Phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tran Huong Ngoc

Bài1: Thục hiện phép tính 1 cách hợp lí

1.\(\dfrac{1995.1994-1}{1993-1995+1994}\)

2.\(\dfrac{2004.2004+3006}{2005.2005-1003}\)

3.\(\dfrac{2010.2011-1}{2009.2011+2010}\)

4.\(\dfrac{2014.2015-1}{2013.2015+2013}\)
 Mashiro Shiina
4 tháng 7 2017 lúc 12:19

\(A=\dfrac{1995.1994-1}{1993.1995+1994}=\dfrac{1995\left(1993+1\right)-1}{1993.1995+1994}=\dfrac{1995.1993+1995-1}{1993.1995+1994}=\dfrac{1995.1993+1994}{1995.1993-1994}=1\)\(B=\dfrac{2004.2004+3006}{2005.2005-1003}=\dfrac{2004.2004+2004.1+1002}{2005.2005-1003}=\dfrac{2004.2005+1002}{2005.2005-1003}=\dfrac{2004.2005+1002}{2004.2005+2005-1003}=\dfrac{2004.2005+1002}{2004.2005+1002}=1\)\(C=\dfrac{2010.2011-1}{2009.2011+2010}=\dfrac{2009.2011+2011-1}{2009.2011+2010}=\dfrac{2019.2011+2010}{2009.20011+2010}=1\)\(D=\dfrac{2014.2015-1}{2013.2015+2013}=\dfrac{2013.2015+2014-1}{2013.2015+2013}=\dfrac{2013.2015+2013}{2013.2015+2013}=1\)

Lê Gia Bảo
4 tháng 7 2017 lúc 12:17

Câu 1 nhầm đề nha bạn mình sửa:

\(\dfrac{1995.1994-1}{1993.1995+1994}\)

\(=\dfrac{1995.\left(1993+1\right)-1}{1993.1995+1994}\)

\(=\dfrac{1995.1993+1995-1}{1993.1995+1994}\)

\(=\dfrac{1993.1995+1994}{1993.1995+1994}\)

\(=1\)

Câu 2: \(\dfrac{2004.2004+3006}{2005.2005-1003}\)

\(=\dfrac{2004.2004+2004+1002}{\left(2004+1\right).\left(2004+1\right)-1003}\)

\(=\dfrac{2004.2004+2004+1002}{2004.2004+2004+1-1003}\)

\(=\dfrac{2004.2004+2004+1002}{2004.2004+2004+1002}\)

\(=1\)

Câu 3:\(\dfrac{2010.2011-1}{2009.2011+2010}\)

\(=\dfrac{\left(2009+1\right).2011-1}{2009.2011+2010}\)

\(=\dfrac{2009.2011+2011-1}{2009.2011+2010}\)

\(=\dfrac{2009.2011+2010}{2009.2011+2010}\)

= 1

Câu 4:Nhầm để, sửa:

\(\dfrac{2014.2015-1}{2013.2015+2014}\)

\(=\dfrac{\left(2013+1\right).2015-1}{2013.2015+2014}\)

\(=\dfrac{2013.2015+2015-1}{2013.2015+2014}\)

\(=\dfrac{2013.2015+2014}{2013.2015+2014}\)

\(=1\)


Các câu hỏi tương tự
Cherry Vương
Xem chi tiết
Vương Linh Đan
Xem chi tiết
Cherry Vương
Xem chi tiết
Hà An Trần
Xem chi tiết
Hà An Trần
Xem chi tiết
Nguyễn Tất Nhật Nam
Xem chi tiết
hay le
Xem chi tiết
Nguyễn Vũ Hoàng
Xem chi tiết
Nguyễn Thế Sơn
Xem chi tiết