Số hàng dọc = ƯCLN (300 ; 276 ; 252) = 12
K6 có 300 : 12 = 25
K7 có 276: 12 = 23
K8 có 252 : 12 = 21
Gọi số hàng dọc có thể xếp được nhiều nhất là aa (hàng, a∈Na∈ℕ*, aa lớn nhất).
⇒300⋮a⇒300⋮a ; 276⋮a276⋮a ; 252⋮a252⋮a
Mà a∈Na∈ℕ*, aa lớn nhất
nên a∈ƯCLN(300,276,252)a∈ƯCLN(300,276,252)
Ta có: ⎧⎪⎨⎪⎩300=22.3.52276=22.3.23252=22.32.7{300=22.3.52276=22.3.23252=22.32.7
⇒ƯCLN(300,276,252)=22.3=4.3=12⇒ƯCLN(300,276,252)=22.3=4.3=12
⇒a=12⇒a=12
Như vậy, có thể xếp được nhiều nhất 1212 hàng dọc.
Khi đó, khối 66 có: 300:12=25300:12=25 (hàng)
khối 77 có: 276:12=23276:12=23 (hàng)
khối 88 có: 252:12=21252:12=21 (hàng)
1) Gọi hàng dọc là a ( hàng ; a thuộc N* ) . a thuộc ƯCLN ( 300 , 276 , 252 )
Ta có
300 = 2^2 . 3 . 5^2.
276 = 2^2 . 3 . 23 .
252 = 2^2 . 3^2 . 7
ƯCLN ( 300 , 276 , 252 ) = 2^2 . 3 = 12
. Mà a là sô lớn nhât suy ra a = 12 . vây chia nhiêu nhat là 12 hàng
. Số hàng ngang khối 6 là 300 : 12 = 25 hàng
số hàng ngang khối 7 là 252 : 12 = 21 hàng
số hàng ngang khối 8 là 276 : 12 = 23 hàng
Bài 6: Khối lớp 6 có 300 học sinh, khối 7 có 276 học sinh, khối 8 có 252 học sinh. Trong một buổi chào cờ học sinh cả 3 khối xếp thành các hàng dọc như nhau. Hỏi có thể xếp được nhiều nhất thành bao nhiêu hàng dọc để mỗi khối đều không có lẻ hàng. Khi đó ở mỗi khối có bao nhiêu hàng?
#Toán lớp 6 3 lê thục đan 22 tháng 11 2021 lúc 19:53Số hàng dọc = ƯCLN (300 ; 276 ; 252) = 12
K6 có 300 : 12 = 25
K7 có 276: 12 = 23
K8 có 252 : 12 = 21
ngô lê vũ 22 tháng 11 2021 lúc 19:54Gọi số hàng dọc có thể xếp được nhiều nhất là aa (hàng, a∈Na∈ℕ*, aa lớn nhất).
⇒300⋮a⇒300⋮a ; 276⋮a276⋮a ; 252⋮a252⋮a
Mà a∈Na∈ℕ*, aa lớn nhất
nên a∈ƯCLN(300,276,252)a∈ƯCLN(300,276,252)
Ta có: ⎧⎪⎨⎪⎩300=22.3.52276=22.3.23252=22.32.7{300=22.3.52276=22.3.23252=22.32.7
⇒ƯCLN(300,276,252)=22.3=4.3=12⇒ƯCLN(300,276,252)=22.3=4.3=12
⇒a=12⇒a=12
Như vậy, có thể xếp được nhiều nhất 1212 hàng dọc.
Khi đó, khối 66 có: 300:12=25300:12=25 (hàng)
khối 77 có: 276:12=23276:12=23 (hàng)
khối 88 có: 252:12=21252:12=21 (hàng)