Gọi chiều dài và chiều rộng mảnh đất lần lượt là a và (m; a,b>0)
+ Mảnh đất có chu vi 70m
\(\Rightarrow2\left(a+b\right)=75\left(1\right)\)
+ Tăng chiều rộng 1m ,giảm chiều dài 5m thì diện tích mảnh đất giảm 60m2 so với ban đầu
\(\Rightarrow\left(a-5\right)\left(b+1\right)=ab-60\\ \Leftrightarrow ab+a-5b-5=ab-60\\ \Leftrightarrow a-5b=-55\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow hpt:\left\{{}\begin{matrix}2a+2b=70\\a-5b=-55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\left(TM\right)\)
Vậy chiều dài mảnh đất là 20(m) và chiều rộng mảnh đất là 15(m)
Nửa chu vi của mảnh đất là: 70:2=35(m)
Gọi chiều dài ban đầu của mảnh đất là a(m)(Điều kiện: \(0< a\le35\))
Chiều rộng ban đầu của mảnh đất là: 35-a(m)
Diện tích ban đầu của mảnh đất là: \(a\left(35-a\right)=35a-a^2\left(m^2\right)\)
Vì khi tăng chiều rộng thêm 1m và giảm chiều dài 5m thì diện tích giảm 60m2 so với ban đầu nên ta có phương trình:
\(\left(a-5\right)\left(35-a+1\right)=35a-a^2-60\)
\(\Leftrightarrow\left(a-5\right)\left(-a+36\right)=35a-a^2-60\)
\(\Leftrightarrow-a^2+36a+5a-180-35a+a^2+60=0\)
\(\Leftrightarrow6a-120=0\)
\(\Leftrightarrow6a=120\)
hay a=20(thỏa ĐK)
Chiều rộng ban đầu là: 35-20=15(m)
Vậy: Chiều dài và chiều rộng ban đầu là 20m và 15m