Bài 1 :
1. Tìm các số tự nhiên x, y sao cho \(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)
2. Cho n là số nguyên tố lớn hơn 3. Hỏi \(n^2+2015\) là số nguyên tố hay là hợp số
Bài 2 :
1. Trên tia Ox lấy hai điểm A và B sao cho OA = 2cm, AB = 6cm
a) Tính khoảng cách giữa trung điểm I của đoạn thẳng OA và trung điểm K của đoạn thẳng AB
b) M là điểm nằm ngoài đường thẳng AB. Biết \(\widehat{OMB}=100^0\) và \(\widehat{OMA}=\dfrac{2}{3}\widehat{AMB}\)
Tính số đo của \(\widehat{AMB}\)
2. Trong mặt phẳng cho 24 điểm phân biệt, trong đó có đúng 6 điểm thẳng hàng. Hỏi có thể vẽ được bao nhiêu đường thẳng qua hai điểm trong 2014 điểm đó
Bài 3 :
Tìm các số tự nhiên a,b,c,d nhỏ nhất sao cho \(\dfrac{a}{b}=\dfrac{5}{14};\dfrac{b}{c}=\dfrac{21}{28};\dfrac{c}{d}=\dfrac{6}{11}\)
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)
<=> \(\dfrac{2xy}{18y}-\dfrac{54}{18y}=\dfrac{y}{18y}\)
<=> 2xy - 54 = y
<=> 2xy - y = 54
<=> y(2x - 1) = 54
Do x; y \(\in Z\Rightarrow2x-1\in Z\)
Mà y(2x - 1) = 54
=> y; 2x - 1 \(\inƯ\left(54\right)\)
Ta thấy 2x - 1 lẻ => 2x - 1 = 1; 3; 9; 27
Nếu \(\left\{{}\begin{matrix}2x-1=1\\y=54\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\y=54\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=54\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}2x-1=3\\y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y=18\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=18\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}2x-1=9\\y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=10\\y=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\) (thảo mãn)
Nếu \(\left\{{}\begin{matrix}2x-1=27\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=28\\y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=2\end{matrix}\right.\)
Vậy các cặp (x; y) thỏa mãn là (1; 54); (2; 18); (5; 6); (14; 2)
@Yuuki Asuna
1.2. Do n là số nguyên tố lớn hơn 3 => n lẻ => n2 lẻ => n2 + 2015 chẵn => n2 + 2015 là hợp số