Gọi \(x,y\) (triệu đồng) là số tiền bác Phương đầu tư cho mỗi khoản \(\left( {0 < x,y < 800} \right)\).
Do bác Phương gửi tổng 800 triệu đồng cho hai khoản đầu tư nên ta có phương trình:
\(x + y = 800\) (1)
Lãi suất cho khoản đầu tư thứ nhất là 6%/năm, số tiền là: \(6\% .x = 0,06x\)
Lãi suất cho khoản đầu tư thứ hai là 8%/năm, số tiền là: \(8\% y = 0,08y\)
Tổng số tiền lãi thu được là 54 triệu đồng, nên ta có phương trình:
\(0,06x + 0,08y = 54\)
Hay \(6x + 8y = 5400\) (2)
Từ (1) và (2) ta có hệ: \(\left\{ \begin{array}{l}x + y = 800\\6x + 8y = 5400\end{array} \right.\)
Nhân phương trình (1) với 3, chia phương tình (2) cho 2 ta có hệ phương trình mới:
\(\left\{ \begin{array}{l}3x + 3y = 2400\,\,\,\left( 3 \right)\\3x + 4y = 2700\,\,\,\left( 4 \right)\end{array} \right.\)
Trừ từng vế của phương trình (4) cho phương trình (3), ta được: \(y = 300\).
Thế \(y = 300\) vào phương trình (1) ta được\(x + 300 = 800\), tức là: \(x = 500\)
Vậy số tiền bác Phương đầu tư cho khoản thứ nhất là 500 triệu đồng, khoản thứ hai là 300 triệu đồng.