a. `M=(x+2)/(x\sqrtx-1)+(\sqrt2+1)/(x+\sqrtx+1)-1/(\sqrtx-1)`
`=(x+2)/( (\sqrtx)^3 -1^3))+(\sqrt2+1)/(x+\sqrtx+1)-1/(\sqrtx-1)`
`= (x+2)/((\sqrtx-1)(x+\sqrtx+1)) + +(\sqrt2+1)/(x+\sqrtx+1)-1/(\sqrtx-1)`
`= ((x+2) +(\sqrt2+1)(\sqrtx-1)-(x+\sqrtx+1))/((\sqrtx-1)(x+\sqrtx+1))`
`=( \sqrt2 (\sqrtx-1))/((\sqrtx-1)(x+\sqrtx+1))`
`= (\sqrt2)/(x+\sqrtx+1)`
b. `x=9 => M=\sqrt2/(9+\sqrt9+1)=\sqrt2/13`
a) Ta có: \(M=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) Thay x=9 vào M, ta được:
\(M=\dfrac{3}{9+3+1}=\dfrac{3}{13}\)