Cho biểu thức: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-4}{\sqrt{x}-3}-1\right)\)
a/ Tìm điều kiện xác định của biểu thức A
b/ Rút gọn A
c/ Tìm các giá trị nguyên của x để giá trị A là một số nguyên.
Cho biểu thức P=(3/1 - x + 1/√x + 1): 1/√x + 1 A Nêu điều kiện xác định và rút gọn biểu thức P B tìm các giá trị của x để P = 5/4 C Tìm giá trị nhỏ nhất của biểu thức m= x + 12/√x - 1 x 1/P
Bài 2: Cho biểu thức: M=\(\dfrac{1+\sqrt{1-a}}{1-a+\sqrt{ }1-a}+\dfrac{1-\sqrt{1+a}}{1+a-\sqrt{1+a}}+\dfrac{1}{\sqrt{1+a}} \)
1,Rút gọn biểu thức M
2, Chứng minh rằng biểu thức M luôn dương với mọi a thuộc tập xác định của M
Cho biểu thức \(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}\)
a, Tìm điều kiện xác định và rút gọn M
b. Tính giá trị của M ,biết rằng \(x=\left(1-\sqrt{3}\right)^2\)và \(y=3-\sqrt{8}\)
CHO BIỂU THỨC A=(\(\dfrac{2+\sqrt{X}}{2-\sqrt{X}}\) - \(\dfrac{2-\sqrt{X}}{2+\sqrt{X}}\) - \(\dfrac{4X}{X-4}\) \()\) : ( \(\dfrac{2}{2-\sqrt{X}}\) - \(\dfrac{\sqrt{X}+3}{2\sqrt{X}-X}\)) a, Tìm x để A luôn xác định b, Rút gọn A c,Tìm x để A < 1
ChoP=\(\left(\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{x-1}\right):\dfrac{1}{\sqrt{x}+1}\)
a,Tìm tập xác định và rút gọn biểu thức P
b,Tìm để P=\(\dfrac{5}{4}\)
c,Tìm giá trị nhỏ nhất của M = \(\dfrac{x+12}{\sqrt{x}-1}\cdot\dfrac{1}{P}\)
cho biểu thức A=\(\left(\frac{\sqrt{x}}{x-36}-\frac{\sqrt{x}-6}{x+6\sqrt{x}}\right):\frac{2\sqrt{x}-6}{x+6\sqrt{x}}+\frac{\sqrt{x}}{6-\sqrt{x}}\)
a, tìm điều kiện của x để A xác định
b, CMR giá trị của A không phụ thuộc vào x, với x thuộc TXĐ
CHO BIỂU THỨC
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
a, tìm điều kiện để biểu thức A xác định
b, rút gọn biểu thức
c, tìm giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho biểu thức:
A= 2(\(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\)) : \(\frac{\sqrt{a}+1}{a^2-a}\)
b1) Rút gọn A
b2) Tìm a để A = \(\frac{a-5}{2}\)