1/Chứng minh rằng :
a/ cot\(^2\)x \(-cos^2x=cot^2x.cos^2x\)
b/ \(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=2tan2x\)
c/ \(\frac{sin4x+cos2x}{1+sin2x-cos4x}=cot2x\)
2/ Rút gọn biểu thức
A=\(sin^3+sin^2xcosx+sinxcos^2x+cos^3x\)
B=\(tanx\left(\frac{1+cos^2x}{sinx}-sinx\right)\)
Với điều kiện alpha khác kpi và alpha khác pi/2 + kpi, chứng minh rằng |tan a + cot a| > bằng 2
mọi người giúp em với ạ, em xin lỗi vì không viết được các dấu ra TT
B1: tính giá trị của biểu thức biết:
a, sinα= -1/2; π<α<3π/2. Tính A= 4sin^2 α - 2 cos α + 3cot α
b, Cho tan α= 2. Tính B= cos^2 x + sin2x + 1/ 2sin^2 x + cos^2 +2
giúp mk vs ạk..
Cho tam giác ABC, có ma= c. CMR: sinA=2sin(B-C)
Chứng minh đẳng thức: sin6α + cos6α - \(\dfrac{3}{2}\)( sin4α + cos4α -1)-1=0
Cảm ơn ạ
giải hộ mình với : chứng minh\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^2=\frac{sin^2x+cot^2x}{1+sin^2x.tan^2x}\)
P=-2sin2x-3sinx+3 tìm GTLN
P= tan4x=?
P=tan5x=?
P=tan6x=?
P= tan4x+tan5x+tan6x=?
Chứng minh rằng với mọi \(\alpha\) làm cho biểu thức \(\dfrac{\sin\alpha+\tan\alpha}{\cos\alpha+\cot\alpha}\) có nghĩa, biểu thức đó không thể là một số âm ?
Các đẳng thức sau có thể đồng thời xảy ra không ?
a) \(\sin\alpha=\dfrac{\sqrt{2}}{3}\) và \(\cos\alpha=\dfrac{\sqrt{3}}{3}\)
b) \(\sin\alpha=\dfrac{-4}{5}\) và \(\cos\alpha=-\dfrac{3}{5}\)
c) \(\sin\alpha=0,7\) và \(\cos\alpha=0,3\)