Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

a) Tìm đạo hàm của các hàm số y = sinx, y = −cosx, y = tanx, y = −cotx.

b) Từ đó, tìm \(\int\cos xdx,\int\sin xdx,\int\dfrac{1}{\cos^2x}dx\) và \(\int\dfrac{1}{\sin^2x}dx\).

datcoder
29 tháng 10 lúc 22:53

a) Ta có:

\(\left( {\sin x} \right)' = \cos x\)

\(\left( { - \cos x} \right)' =  - \left( { - \sin x} \right) = \sin x\)

\(\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}}\)

\(\left( { - \cot x} \right)' =  - \frac{{ - 1}}{{{{\sin }^2}x}} = \frac{1}{{{{\sin }^2}x}}\)

b) Từ câu a, ta có:

\(\int {\cos xdx}  = \sin x + C\)

\(\int {\sin xdx}  =  - \cos x + C\)

\(\int {\frac{1}{{{{\cos }^2}x}}dx = \tan x + C} \)

\(\int {\frac{1}{{{{\sin }^2}x}} =  - \cot x + C} \)